【高校实训】面向高校CS专业的AI训练实训平台
云原生一站式机器学习/深度学习/大模型AI平台,支持sso登录,多租户,大数据平台对接,notebook在线开发,拖拉拽任务流pipeline编排,多机多卡分布式训练,超参搜索,推理服务VGPU,边缘计算,serverless,标注平台,自动化标注,数据集管理,大模型微调,vllm大模型推理,llmops,私有知识库,AI模型应用商店,支持模型一键开发/推理/微调,支持国产cpu/gpu/npu芯片,支持RDMA,支持pytorch/tf/mxnet/deepspeed/paddle/colossalai/horovod/spark/ray/volcano分布式,私有化部署。
云原生一站式机器学习/深度学习/大模型AI平台可以大大提高带领学生完成AI实训和项目开发的效率,区别于市场上现有的实训平台,完整的平台包含:
- 1、机器的标准化
- 2、分布式存储(单机可忽略)、k8s集群、监控体系(prometheus/efk/zipkin)
- 3、基础能力(tf/pytorch/mxnet/valcano/ray等分布式,nni/katib超参搜索)
- 4、平台web部分(oa/权限/项目组、在线构建镜像、在线开发、pipeline拖拉拽、超参搜索、推理服务管理等)
云原生一站式机器学习/深度学习/大模型AI平台
算力/存储/用户管理
算力:
- 云原生统筹平台cpu/gpu等算力
- 支持划分多资源组,支持多k8s集群,多地部署
- 支持T4/V100/A100/昇腾/dcu/VGPU等异构GPU/NPU环境
- 支持边缘集群模式,支持边缘节点上开发/训练/推理
- 支持鲲鹏芯片arm64架构,RDMA
存储:
- 自带分布式存储,支持多机分布式下文件处理
- 支持外部存储挂载,支持项目组挂载绑定
- 支持个人存储空间/组空间等多种形式
- 平台内存储空间不需要迁移
用户权限:
- 支持sso登录,对接公司账号体系
- 支持项目组划分,支持配置相应项目组用户的权限
- 管理平台用户的基本信息,组织架构,rbac权限体系
多集群管控
支持多集群调度,可同时管控多个训练或推理集群。在单个集群内,不仅能做到一个项目组内对在线开发、训练、推理的隔离,还可以做到一个k8s集群下多个项目组算力的隔离。另外在不同项目组下的算力间具有动态均衡的能力,能够在多项目间共享公共算力池和私有化算力池,做到成本最低化。
分布式存储
自动为用户挂载用户的个人目录,同一个用户在平台任何地方启动的容器,其用户个人子目录均为/mnt/$username。可以将pvc/hostpath/memory/configmap等挂载成容器目录。同时可以在项目组中配置项目组的默认挂载,进而实现一个项目组共享同一个目录等功能。
在线开发
- 系统多租户/多实例管理,在线交互开发调试,无需安装三方控件,只需浏览器就能完成开发。
- 支持vscode,jupyter,Matlab,Rstudio等多种在线IDE类型
- Jupyter支持cube-studio sdk,Julia,R,python,pyspark多内核版本,
- 支持c++,java,conda等多种开发语言,以及tensorboard/git/gpu监控等多种插件
- 支持ssh remote与notebook互通,本地进行代码开发
- 在线镜像构建,通过Web Shell方式在浏览器中完成构建;并提供各种版本notebook,inference,gpu,python等基础镜像
标注平台:
- 支持图/文/音/多模态/大模型多种类型标注功能,用户管理,工作任务分发
- 对接aihub模型市场,支持自动化标注;对接数据集,支持标注数据导入;对接pipeline,支持标注结果自动化训练
拖拉拽pipeline编排
1、ML全流程
数据导入,数据预处理,超惨搜索,模型训练,模型评估,模型压缩,模型注册,服务上线,ml算法全流程
2、灵活开放
支持单任务调试、分布式任务日志聚合查看,pipeline调试跟踪,任务运行资源监控,以及定时调度功能(包含补录,忽略,重试,依赖,并发限制,过期淘汰等功能)
分布式框架
1、训练框架支持分布式(协议和策略)
2、代码识别分布式角色(有状态)
3、控制器部署分布式训练集群(operator)
4、配置分布式训练集群的部署(CRD)
多层次多类型算子
以k8s为核心,
1、支持tf分布式训练、pytorch分布式训练、spark分布式数据处理、ray分布式超参搜索、mpi分布式训练、horovod分布式训练、nni分布式超参搜索、mxnet分布式训练、volcano分布式数据处理、kaldi分布式语音训练等,
2、 以及在此衍生出来的分布式的数据下载,hdfs拉取,cos上传下载,视频采帧,音频抽取,分布式的训练,例如推荐场景的din算法,ComiRec算法,MMoE算法,DeepFM算法,youtube dnn算法,ple模型,ESMM模型,双塔模型,音视频的wenet,containAI等算法的分布式训练。
功能模板化
- 和非模板开发相比,使用模板建立应用成本会更低一些,无需开发平台。
- 迁移更加容易,通过模板标准化后,后续应用迁移迭代只需迁移配置模板,简化复杂的配置操作。
- 配置复用,通过简单的配置就可以复用这些能力,算法与工程分离避免重复开发。
为了避免重复开发,对pipeline中的task功能进行模板化开发。平台开发者或用户可自行开发模板镜像,将镜像注册到平台,这样其他用户就可以复用这些功能。平台自带模板在job-template目录下
流水线调试
- Pipeline调试支持定时执行,支持,补录,并发限制,超时,实例依赖等。
- Pipeling运行,支持变量在任务间输入输出,全局变量,流向控制,模板变量,数据时间等
- Pipeling运行,支持任务结果可视化,图片、csv/json,echart源码可视化
nni超参搜索
界面化呈现训练各组数据,通过图形界面进行直观呈现。 减少以往开发调参过程的枯燥感,让整个调参过程更加生动具有趣味性,完全无需丰富经验就能实现更精准的参数控制调节。
# 上报当前迭代目标值 nni.report_intermediate_result(test_acc) # 上报最终目标值 nni.report_final_result(test_acc) # 接收超参数为输入参数 parser.add_argument('--batch_size', type=int)
推理服务
0代码发布推理服务从底层到上层,包含服务网格,serverless,pipeline,http框架,模型计算。
-
服务网格阶段:主要工作是代理流量的中转和管控,例如分流,镜像,限流,黑白名单之类的。
-
serverless阶段:主要为服务的智能化运维,例如服务的激活,伸缩容,版本管理,蓝绿发布。
-
pipeline阶段:主要为请求在各数据处理/推理之间的流动。推理的前后置处理逻辑等。
-
http/grpc框架:主要为处理客户端的请求,准备推理样本,推理后作出响应。
-
模型计算:模型在cpu/gpu上对输入样本做前向计算。
主要功能:
- 支持模型管理注册,灰度发布,版本回退,模型指标可视化,以及在piepline中进行模型注册
- 推理服务支持多集群,多资源组,异构gpu环境,平台资源统筹监控,VGPU,服务流量分流,复制,sidecar
- 支持0代码的模型发布,gpu推理加速,支持训练推理混部,服务优先级,自定义指标弹性伸缩。
监控和推送
监控:集成prometheus生态,可以监控包括主机,进程,服务流量,gpu等相关负载,并配套grafana进行可视化
推送:开放推送接口,可自定义推送给企业oa系统
AIHub
- 系统自带通用模型数量400+,覆盖绝大数行业场景,根据需求可以不断扩充。
- 模型开源、按需定制,方便快速集成,满足用户业务增长及二次开发升级。
- 模型标准化开发管理,大幅降低使用门槛,开发周期时长平均下降30%以上。
- AIHub模型可一键部署为WEB端应用,手机端/PC端皆可,实时查看模型应用效果
- 点击模型开发即可进入notebook进行模型代码的二次开发,实现一键开发
- 点击训练即可加入自己的数据进行一键微调,使模型更贴合自身场景
GPT训练微调
- 支持deepspeed/colossalai等分布式加速框架,可一键实现大模型多机多卡分布式训练
- AIHub包含gpt/AIGC大模型,可一键转为微调pipeline,修改为自己的数据后,便可以微调并部署
GPT-RDMA
rdma插件部署后,k8s机器可用资源
capacity: cpu: '128' memory: 1056469320Ki nvidia.com/gpu: '8' rdma/hca: '500'
代码分布式训练中使用IB设备
export NCCL_IB_HCA=mlx5 export MLP_WORKER_GPU=$GPU_NUM export MLP_WORKER_NUM=$WORLD_SIZE export MLP_ROLE_INDEX=$RANK export MLP_WORKER_0_HOST=$MASTER_ADDR export MLP_WORKER_0_PORT=$MASTER_PORT
gpt私有知识库
- 数据智能模块可配置专业领域智能对话,快速敏捷使用llm
- 可为某个聊天场景配置私有知识库文件,支持主题分割,语义embedding,意图识别,概要提取,多路召回,排序,多种功能融合
gpt智能聊天
- 可以将智能会话与AIHub相结合,例如下面AIGC模型与聊天会话
- 可使用Autogpt方式串联所有aihub模型,进行图文音智能化处理
- 智能会话与公共直接打通,可在微信公众号中进行图文音对话
数据中台对接
为了加速AI算法平台的使用,cube-studio支持对接公司原有数据中台,包括数据计算引擎sqllab,元数据管理,指标管理,维表管理,数据ETL,数据集管理
三种方式部署
针对企业需求,根据不同场景对计算实时性的不同需求,可以提供三种建设模式
模式一:私有化部署——对数据安全要求高、预算充足、自己有开发能力
模式二:边缘集群部署——算力分散,多个子网环境的场景,或边缘设备场景
模式三:serverless集群——成本有限,按需申请算力的场景
边缘计算
通过边缘集群的形式,在中心节点部署平台,并将边缘节点加入调度,每个私有网用户,通过项目组,将notebook,pipeline,service部署在边缘节点
- 1、避免数据到中心节点的带宽传输
- 2、避免中心节点的算力成本,充分利用边缘节点算力
- 3、避免边缘节点的运维成本